

bre

Fire Risk Assessment
- Common sense and a little mathematics?

Dr David Charters
Director of Fire Engineering

Why Assess Fire Risks?

bre

Why Assess Fire Risks?

bre

Why Assess Fire Risks?

bre

Why Assess Fire Risks?

bre

Why Assess Fire Risks?

bre

Why Assess Fire Risks?

bre

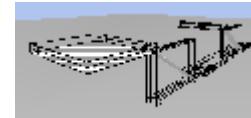
Why Assess Fire Risks?

Equivalency:

“...demonstrate that a building, as designed, presents no greater **risk** to occupants than a similar type of building designed in accordance with well established codes.”

bre

Why Assess Fire Risks/Manage Business Risks?



bre

Fire Engineering Design Brief

1. Structural design of building
2. Fire safety objectives
3. Fire hazards & consequences
4. Trial fire safety designs
5. Acceptance criteria & method analysis
6. Fire scenarios for analysis

Fire Safety Order 2005

Fire Risk Assessment

bre

FIRE SAFETY RISK ASSESSMENT	
1	Identify fire hazards
2	Identify people at risk
3	Evaluate, remove, reduce and protect from risk
4	Record, plan, inform, instruct and train
5	Review

Which fire risks are highest priority?

Hazard frequency

Occurrence frequency, F	Range	Rating
Never	< 1 in 10,000 years	0
Remote	1 in 1,000 to 1 in 9,999 years	1
Rare	1 in 100 to 1 in 999 years	2
Infrequent	1 in 10 to 1 in 99 years	3
Occasional	1 in 1 to 1 in 9 years	4
Frequent	Once to 10 times per year	5
Common	> 10 times per year	6

bre

Hazard Severity

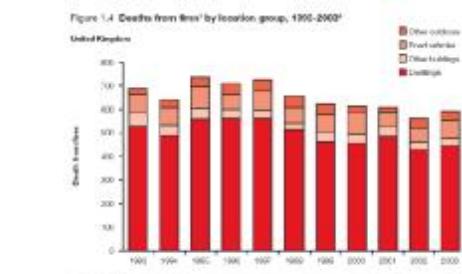
Severity (Life safety), S	Rating
None	0
Minor injuries	1
Major injuries	2
One fatality	3
Multiple fatalities	4

bre

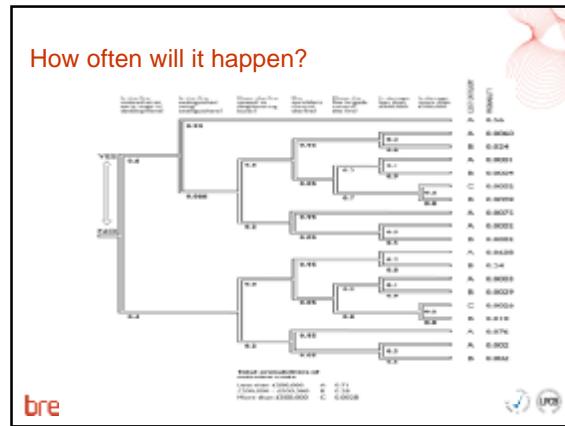
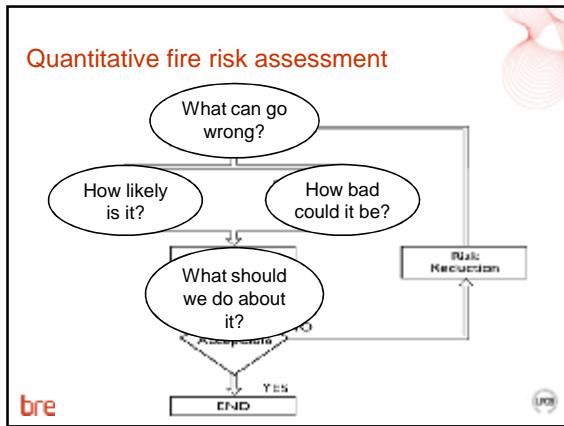
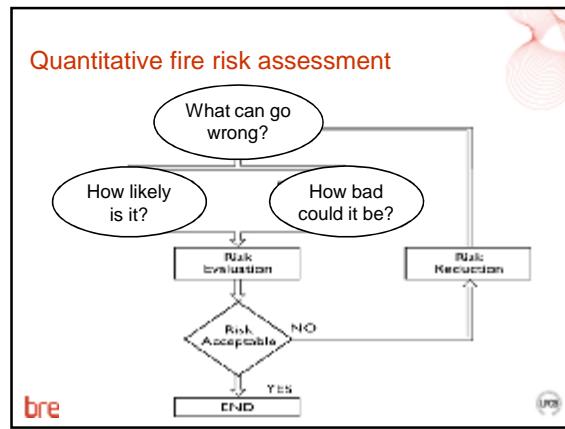
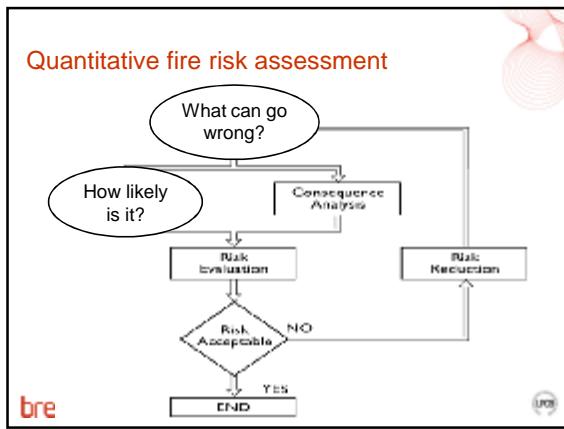
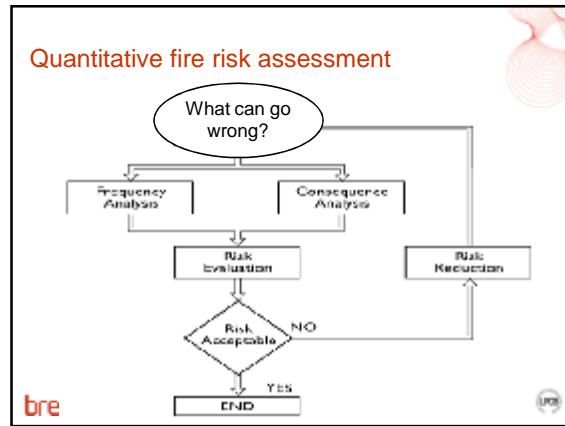
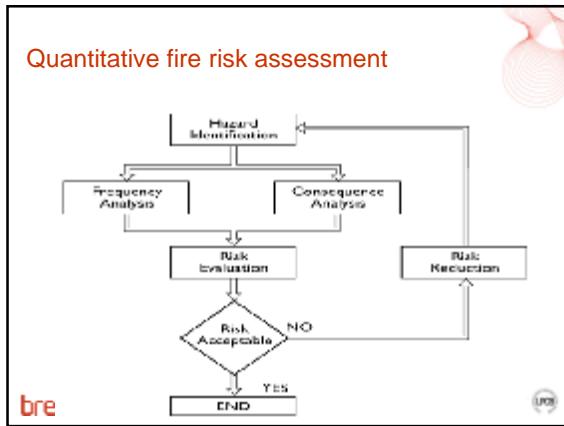
Prioritised fire risk ratings

Location	Risk rating
Link Works	10.0
Food Prep Basement	9.1
Retail Outlets	9.0
East Side Offices (including Station Control Room)	8.3
Non-Public Areas – West side offices and South West offices	8.3
Platform 9 - 11	8.3
Platform areas 2 to 8	8.3
Concourse and forecourt	8.0
Platform 1 and Access Road	8.0
Clothes store (above 9 - 11)	7.0
Car Parks	6.3
Parcel Post	6.3
Underground Station	5.0
Public Highway	5.0
Hotel Way	4.0

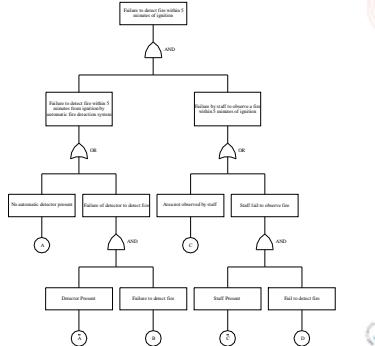
Largest fire safety experiment in the world



bre







Largest fire safety experiment in the world

bre

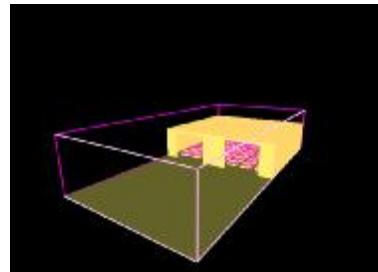

UK Fire Statistics

bre

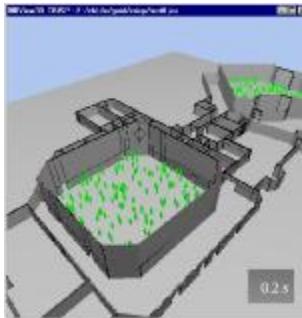
Frequency Analysis

bre

How bad will it be?

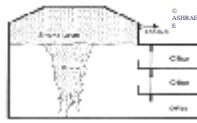

bre

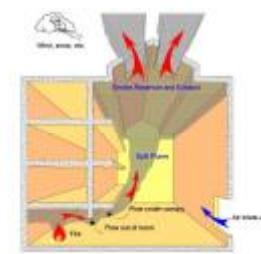
Full scale fire experiments


bre

Computational fire models

bre


Computational egress models


bre

Simple calculations

- Temperature?
- Depth?
- Toxicity?
- Visibility?
- Radiation?

bre

bre

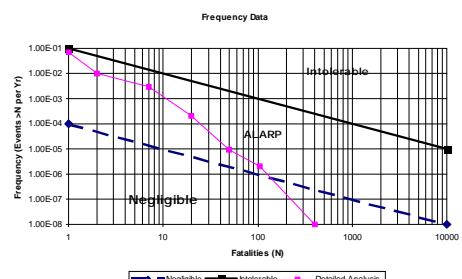
Why do we accept or tolerate risks?

bre

Why do we accept or tolerate risks?

bre

Why do some people who drive have a fear of flying?


bre

Why are fire risks higher in dwellings?

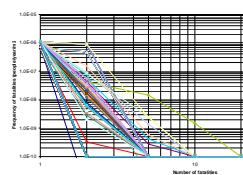
Occupancy	Probability of casualty/occupant year
Dwellings	1 in 910
Hotels	1 in 4,000
Banks	1 in 63,000
Government	1 in 7,100
Schools	1 in 240,000
Colleges	1 in 83,000
Hospitals	1 in 29,000

bre

What level of risk will society accept?

bre

Where is fire risk assessment applied?


bre

Shopping Centre design, Denmark

First shopping centre in Denmark:
 • No risks intolerable or negligible
 • Large retail units:
 - Risks are not as low as reasonably practicable!

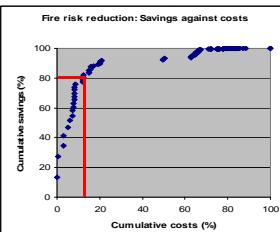
Improved safety!

bre

Charters and Wu 2003

Network Rail fire risk management, UK

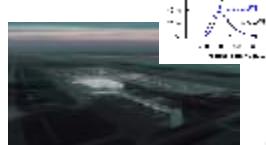
Quantitative Fire Risk Assessment of 90 assets


80% of benefit from 15% of investment

£3m investment:
 • Avoid £22m of poor investment
 • Savings of £14m **every year**

Improved punctuality!

Network Rail
bre


Charters and Wu 2002

Changes to Building Regulations Guidance

Regulatory Impact Assessment:

CRISP (Computation of Risk Indices by Simulation Procedures)
 Monte-carlo Simulation

bre

How can we innovate safely?

New designs:

- Larger
- Taller
- Deeper
- More complex
- Open plan
- Atria everywhere

New fire safety solutions:

- Alternative fire strategies
- Reduced protection
- Sustainability

bre

Recent and immature?

1657 Probability theory

Pascal

1792 First quantitative risk assessment

Laplace

“...common sense and a little mathematics...”

bre

Why quantify fire risks?

“What can go wrong, will go wrong.”

Disraeli

“If you can not measure it, you can not control it.”

Lord Kelvin

“If one would divine the future, then one must study the past.”

Confucius

bre

